МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ ПО САСУДС

Для курсантов 6-го курса ФС.

А. МЕТОДИЧЕСКИЕ УКАЗАНИЯ

1. Цель и задачи заданий.

1.1. Цель контрольной работы.

Проверить уровень знаний в области современных автоматических систем управления движением судна.

1.2. Задачи заданий.

Курсанты должны знать:

- 1) общие сведения об управлении судном.
- 2) Особенности управляемости судов.
- 3) Общие сведения, требования, структуру, основные функции, программное обеспечение систем:
 - а) Управляющая курсом система;
 - б) Система вождения по маршруту;
 - с) Электронные управляющие скоростью судна системы.
- 4) Системы позиционирования судна.
- 5) Требования ИМО к системам управления.

2. Состав контрольной работы.

Контрольная работа состоит из 10 вариантов по 5 вопросов в каждом варианте.

Методические указания для выполнения контрольной работы по варианту № 1

1. Обратить внимание на геометрические, кинематические и гидродинамические характеристики крыла. Изучить схему сил на крыле.

Особое внимание обратить на зависимость и силы сопротивления R и подъемной силы F от угла атаки и связать это с предельными углами перекладки руля.

- 2. Изучить функции выполнения поворотов. Знать режимы изменения курса и обратить внимание на два вида срочного уклонения судна. Изучить функции обеспечения целостности.
- 3. Знать общую структуру программ управления СДАУгд и обратить внимание на программы дистанционного управления дизелями.
- 4. Ознакомиться со значением управляемости судна на предельно малых скоростях движения и изучить задачи динамического позиционирования.
- 5. Проанализировать свойства ПД- регулятора используя уравнение свободного движения судна с АР. Обратить особое внимание на неустойчивое на курсе судно. Сделать вывод о применении этого регулятора на практике.

- 1. Изучить геометрические характеристики корпуса судна, форму подводной части и влияние геометрических характеристик на управляемость судна. Обратить внимание на : влияние коэффициента общей полноты на параметры циркуляции.
- 2. Обратить внимание на используемый принцип управления по отклонению для стабилизации курса судна.. Изучить функциональные схемы САУк в режиме стабилизации, а также функциональную схему ПИД регулятора с рулевым приводом.
- 3. Изучить назначение, режимы СВМ, требования к СВМ, а также функциональную схему двухконтурной САУм.
- 4. Изучить два режима управления: "POSITIONING", "TRANZIT" обратить внимание на маневры судна в этих режимах.
- 5. Провести анализ эффективности П-алгоритма управления используя упрощенное уравнение движения судна с АР. Обратить внимание на переходной процесс системы стабилизации курса и сделать вывод о пригодности регулятора для стабилизации курса морских судов.

- 1. Изучить инерционные силы и моменты, их виды. Представить их в виде суммы составляющих.
- 2. Изучить и дать характеристику пропорциональной дифференциальной и интегральной составляющих алгоритма используемых для стабилизации судна. Особое внимание обратить на действия сигнала дифференцирующей составляющей.
- 3. Изучить метод параллельного смещения отрезка пути при оперативном изменении маршрута для расхождения с судами и препятствиями. Выполнить и изучить чертежи, предложенные на рис. 8.8 и рис. 8.9 в учебнике №1.
- 4. Изучить устройство пульта управления системы ДАУП и назначение всех устройств пульта.
- 5. Изучить функциональные возможности САУv. Особое внимание обратить на: СДАУ ГД, сигнализацию неполадок I, II, III степени.

- 1. Изучить позиционную силу и ее компоненты, а также моменты позиционной и демпфирующих сил и сделать заключение о моменте ГДС.
- 2. Изучить статические и переходные характеристики двигателей, а также этапы реверсирования дизельной и паротурбинной ГДУ.
- 3. Изучить функциональную схему САУк с адаптивным АР. Обратить внимание на критерии оптимальности, а также на методы адаптации к изменяющимся условиям.
- 4. Рассмотреть обобщенную блок схему САУ судна с ВФШ. Обратить внимание на правила и требования Классификационных обществ для ИУС v.
- 5. Дать характеристику программ управления, изучить принципы расчета сил для поступательного перемещения и вращения корпуса. Обратить внимание на программы контроля целостности.

- 1. Изучить основные кинематическую и гидродинамическую характеристики рулей. Начертить на рисунке эти характеристики. Особое внимание обратить на характер изменения подъемной силы и силы сопротивления руля показав их характер на рисунке.
- 2. Изучить принцип выполнения поворотов методом слежения за задающими воздействиями и с применением эталонной модели САУк. Обратить внимание на дополнительные функции БПМ.
- 3. Изучить функциональную схему ИУСv и назначение блоков пультов, модулей и систем.
- 4. Наиболее перспективные направления в теории управления. Это управляющие системы, основанные на нечеткой логике и с нейронным управлением. Выпускаемые новейшие AP, типа NAVpilot 500 Furuno успешно эксплуатируются на судах гражданского флота. Техническая документация не дает информации о принципе действия и устройства этих AP. В учебнике №1 в популярной форме освещены понятия о нечеткой логике. Необходимо внимательно ознакомиться с материалом стр. 276-282.
- 5. Обратить особое внимание на регулировки "Rudder", "Counter rudder", "Weather" изучить показатели качественной стабилизации курса и принципы настройки AP.

- 1. Изучить назначение и состав РП. В зависимости от проекта судна применяются различные РП. Необходимо обобщить значения об этих устройствах и при практической деятельности ускорить их изучение. Очень важно знать требования предъявляемые как к главным РП так и вспомогательным, а также знать их упрощенную схему.
- 2. Важно уяснить, что при управлении курсом скорость судна неизменна. При повороте, чтобы его радиус был R_3 , скорость поворота должна быть также постоянна. Судно в момент начала поворота не может сразу изменить угловую скорость, так и в его конце. Главная цель управления курсом сведения ошибок курса и угловой скорости к нулю. Необходимо уяснить схемы AP для генерации $K_3(t)$, $w_3(t)$ в соответствии с которыми должны меняться курс и угловая скорость судна.
- 3. Изучить общие рекомендации относительно настройки АР. Обратить внимание на первоначальную и текущие настройки, такие как:
 - Влияние изменения скорости хода и загрузки;
 - На волнение;
 - При сильном волнении;
 - Уменьшение скорости перекладки руля;
 - Увеличение задержки в отработке РП.
- 4. Требуется рассмотреть ситуацию до маневра оценить ее и выбрать маневр. Как, пример, предложено на рис. 8.10 и 8.11 учебника №1 и в дальнейшем изучить, как выбирается маневр расхождения.
- 5. В учебнике 1 дана схема (на рис. 9.4) панели СДАУ $_{rд}$ на мостике судна. Эта схема обобщена, ее необходимо изучить как важнейшее руководство для практической работы, обратив особое внимание на сигналы: «Shut Down», «Slow Down», «Fail».

- 1. Необходимо изучить назначение и классификацию рулей. Учитывая влияние геометрических характеристик руля на управляемость судна. Очень важно знать их характеристику, а также влияние площади руля его относительного удлинения и расположения в винтовой струе или вне ее.
- 2. Фильтрация волнового рыскания является важной частью АР. Необходимо уяснить природу волнового рыскания и необходимость качественной его фильтрации. Изучить АЧХ фильтра.
- 3. Адаптивные AP являются современными устройствами существенно облегчающие работу судоводителя. Необходимо ознакомиться с разнообразными методами адаптации к изменяющимся условиям.
- 4. По этому вопросу в учебнике 1 на рис. 8.13 и 8.14 показаны способ выбора изменения траектории для расхождения с судами, что имеет практическое применения. Важно внимательно изучить и возможно применять этот способ в практической деятельности судоводителя.
- 5. Необходимо ознакомиться с постановкой задачи планирования скорости, разбивкой маршрута на элементарные участки, учитывать различные ограничения в движении судна. На каких зависимостях базируется оптимизация плана по критерию минимизации расхода топлива.

- 1. Необходимо ознакомиться с назначением, различными видами и характеристиками ПРУ т.к. они являются очень важными инструментами судоводителя при маневрировании на малых скоростях. Обратить особое внимание на движение судна под действием носовых ПРУ, а также изучить схему пульта азимутального ПРУ.
- 2. В АР используется различные технологии для фильтрации волновой помехи. Линейные фильтры являются эффективным для всех типов судов поэтому требуется изучить теорию этих фильтров и уточнить наибольшую их эффективность на конкретных судах. Самым современным из фильтров в настоящее время является фильтр «Калмана». Необходимо очень внимательно рассмотреть принцип выделения низкочастотного отклонения из рыскания судна этим фильтром и знать его схему (рис. 7.24 учебник №1).
- 3. Для изучения принцип работы AP с элементами нечеткой логики необходимо предварительно проработать материал из небольшого раздела учебника №1 «Сведения из нечеткой логики». Изучить блок-схему САУ $_{\kappa}$ с нечетким AP рис 7.29 учебник №1.
- 4. Обратить внимание на особенности объектов управления скоростью хода. Важно уяснить что $ИУС_v$ состоит из трех систем и дать их назначение. СДАУ $_{rд}$ является основной частью $ИУС_v$ и поэтому требования к СДАУ $_{rд}$ являются очень важными.
- 5. Уточнить, что представляет собой стандартная статическая характеристика, также уяснить зависимости: между мощностью ГД и скоростью хода судна. Т.к. экономия топлива главная составляющая эксплуатационных расходов судна, то необходимо знать и топливную характеристику ГД, которая приводится в паспорте ГД.

- 1. Знать виды переходных характеристик и дать их характеристику. Уметь пользоваться графиками переходных процессов.
- 2. Знать требования установленные резолюциями ИМО к управляющим курсам системам, а также эксплуатационные требования к АР:
 - функциональность;
 - переключение режимов;
 - сигнализация;
 - органы управления;
 - интерфейс;
 - инструкции.

Изучить принципы управления в ручных и автоматических режимах управления курсом.

- 3. Изучить значения ПИ-алгоритма. Знать какая составляющая является основной. Иметь понятие о статической погрешности, интегральной компоненте, критерии оптимальности. Уметь производить расчет бокового отклонения по данным позиционного датчика. Знать особенности GPS и что представляет собой маршрут с зонами эволюционного движения, а также контроль прохождения маршрута.
- 4. Ознакомиться с алгоритмом планирования скорости движения, используя рис. 9.7 учебника №1.
- 5. Изучить диаграммы поворотливости судна, используя рис. 6.5. и 6.6. учебника №1 особо обратить внимание на неустойчивое на курсе судно. Уметь пользоваться графиком статической характеристики и как выполняют маневр «Спиралью Дидонне», а также ознакомиться с обработкой результатов маневра.

- 1. Знать, как выполняется циркуляция судна схему и ее параметры. Изучить переходные характеристики судна используя рис. 6.13 учебника №1.
- 2. Используя рис. 7.3 (учебник 1) Схема пульта адаптивного АР изучить:
 - секцию режимов управления;
 - секцию элементов поворота;
 - секцию ручных установок;
 - выход на новый курс следования;
 - отображение на дисплее рулевого.
- 3. Этот режим по существу сводится к режиму «Way point steering». Используя рис. 8.6. и рис. 8.7. Изучить возможности режима.
- 4.Изучить функциональные возможности САУ_v Обратить особое внимание на неполадки I, II, III степени.
- 5. Для обеспечения работы дизеля применяются специальные системы. Судоводитель обязан их знать и правильно их использовать. Особо важные это пусковая, реверсивная системы и СДАУ $_{\rm гд}$. Необходимо изучить эти системы в объеме учебника №1.

Б. ЗАДАНИЕ К КОНТРОЛЬНОЙ РАБОТЕ

В соответствии с учебным планом по дисциплине «Современные автоматизированные системы управления движением судов» (САСУДС) курсантами — заочниками ОНМА должна быть выполнена одна контрольная работа.

Вопросы, на которые следует дать исчерпывающий письменный ответ, помещены ниже. Контрольная работа сдается в методический кабинет кафедры ЭКС для проверки преподавателем.

Свой номер варианта ответов на вопросы следует выбирать по последней цифре Вашего шифра зачетной книжки.

Ниже приводится соответствие вариантов.

Последняя цифра шифра	Номер варианта
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
0	0

Вариант №1

- 1. Геометрические и гидродинамические характеристики крыла.
- 2. Функции авторулевых.
- 3. Программное обеспечение СДАУгд.
- 4. Назначение систем динамического позиционирования.
- 5. Анализ эффективности алгоритма управления (ПД-регулятор).

Вариант № 2

- 1. Геометрические характеристики корпуса и их влияние на управляемость судна.
- 2. Принцип решения задачи стабилизации курса.
- 3. Назначение и режимы СВМ, требования к ней, структура системы.
- 4. Режимы управления ДАУП.
- 5. Анализ эффективности алгоритма управление (П-регулятор).

Вариант № 3

- 1. Инерционные силы и моменты.
- 2. Назначение составляющих ПИД алгоритма.
- 3. Оперативное изменение маршрута для расхождения с судами и препятствиями. Параллельное смещение отрезка пути.
- 4. Конфигурация маневренной системы.
- 5. Основные функции САУ v.

Вариант № 4

- 1. Гидродинамические характеристики корпуса судна.
- 2. Основные характеристики двигателя как объекта управления.
- 3. Адаптивные авторулевые.
- 4. Обобщенная блок-схема САУ v.
- 5. Программное обеспечение ДАУП.

Вариант № 5

- 1. Кинематические и гидродинамические характеристики рулей.
- 2. Выполнение поворотов.
- 3. Структура ИУСу.
- 4. Авторулевые с элементами искусственного интеллекта. Сведения из нечеткой логики.
- 5. Настройка авторулевых.

Вариант № 6

- 1. Рулевой привод и предъявляемые к нему требования.
- 2. Формаль постановка задачи управления курсом и схемы ее решения.
- 3. Принципы настройки авторулевых.
- 4. Оперативное изменение маршрута. Выбор маневра. Выбор маневра расхождения.
- 5. Схема панели СДАУ_{гд} на мостике судна. Функциональные возможности, назначение сигналов, сообщений и предупреждений.

Вариант № 7

- 1. Рули, их классификация и геометрические характеристики.
- 2. Необходимость фильтрации волнового рыскания и интерпретация задачи фильтрации.
- 3. Методы адаптации к изменяющимся условиям в современных АР.
- 4. Оперативное изменение маршрута. Вставка путевой точки.
- 5. Оперативное планирование скорости судна.

Вариант № 8

- 1. Подруливающие устройства. Назначения, виды характеристики ПРУ.
- 2. Способы фильтрации волнового рыскания.
- 3. Принцип работы нечеткого авторулевого.
- 4. Понятие о системе управления скоростью хода. Требования к СДАУ $_{rд}$.
- 5. Статические характеристики судна, управляемого винтом.

Вариант № 9

- 1. Переходные характеристики управляемого гребным винтом судна.
- 2. Требования к управляющей курсом системе и режимы управления курсом.
- 3. Режим вождения «по линии маршрута».
- 4. Алгоритм планирования скорости судна.
- 5. Статические характеристики управляемого рулем судна.

Вариант № 0

- 1. Переходные функции судна управляемого рулем.
- 2. Схема пульта адаптивного АР.
- 3. Режим вождения «от WP к WP».
- 4. Основные функции ИУС $_{\rm v}$. Неполадки I, II, III. Степени опасности.
- 5. Вспомогательные системы главных дизелей. Система управления двигателем.

Рекомендованная литература

1. Л.Л. Вагущенко, Н.Н. Цымбал

Системы автоматического управления движением судна: Учебник. – Третье издание, переработанное и дополненное. – О.: Фенікс; -М.: ТрансЛит, 2007. – 376 с.

2. Вагущенко Л.Л.

Системы автоматического управления движения судна. — Одесса. Латстар, $2002 \ \Gamma - 310 \ c$.

3. Баскин А.С. и др.

Береговые системы управления движением судов. М.: Транспорт, 1986. - 159с.

- 4. Вагущенко Л.Л., Стафеев А.М., Цымбал Н.Н. Автоматизация судовождения. О.: ОГМА, 1994. -355с.
- 5. Вагущенко Л.Л.

Интегрированные системы ходового мостика. – Одесса. Латстар, 2003 -169 с.

6. Вагущенко Л. Л., Вагущенко А. Л.

Поддержка решений по расхождению с судами. Учебное пособие – О.: Феникс. 2010 – 296c.

7. Вагущенко Л. Л.

Расхождение с судами смещением на параллельную линию пути. Монография – Одесса: Феникс, 2013г. -180c.